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Abstract

We describe scoring metrics for learning
Bayesian networks from a combination of
user knowledge and statistical data. We
identify two important properties of metrics,
which we call event equivalence and parame-

ter modularity. These properties have been
mostly ignored, but when combined, greatly
simplify the encoding of a user’s prior knowl-
edge. In particular, a user can express his
knowledge—for the most part—as a single
prior Bayesian network for the domain.

1 Introduction

The fields of Artificial Intelligence and Statistics share
a common goal of modeling real-world phenomena.
Whereas AI researchers have emphasized a knowledge-
based approach to achieving this goal, statisticians
have traditionally emphasized a data-based approach.
In this paper, we present a unification of the two ap-
proaches. In particular, we develop algorithms based
on Bayesian principles that take as input (1) a user’s
prior knowledge expressed—for the most part—as a
prior Bayesian network and (2) statistical data, and
returns one or more improved Bayesian networks.

Several researchers have examined methods for learn-
ing Bayesian networks from data, including Cooper
and Herskovits (1991,1992), Buntine (1991), and
Spiegelhalter et al. (1993) (herein referred to as CH,
Buntine, and SDLC, respectively). These methods all
have the same basic components: a scoring metric and
a search procedure. The metric computes a score that
is proportional to the posterior probability of a net-
work structure, given data and a user’s prior knowl-
edge. The search procedure generates networks for
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evaluation by the scoring metric. These methods use
the two components to identify a network or set of
networks with high posterior probabilities, and these
networks are then used to predict future events.

In this paper, we concentrate on scoring metrics. Al-
though we restrict ourselves to domains containing
only discrete variables, as we show in Geiger and Heck-
erman (1994), our metrics can be extended to domains
containing continuous variables. A major contribution
of this paper is that we develop our metrics from a
set of consistent properties and assumptions. Two of
these, called parameter modularity and event equiva-
lence, have been ignored for the most part, and their
combined ramifications have not been explored. The
assumption of parameter modularity, which has been
made implicitly by CH, Buntine, and SDLC, addresses
the relationship among prior distributions of param-
eters for different Bayesian-network structures. The
property of event equivalence says that two Bayesian-
network structures that represent the same set of in-
dependence assertions should correspond to the same
event and therefore receive the same score. We pro-
vide justifications for these assumptions, and show
that when combined with assumptions about learn-
ing Bayesian networks made previously, we obtain a
straightforward method for combining user knowledge
and statistical data that makes use of a prior network.
Our approach is to be contrasted with those of CH
and Buntine who do not make use of a prior network,
and to those of CH and SDLC who do not satisfy the
property of event equivalence.

Our identification of the principle of event equivalence
arises from a subtle distinction between two types of
Bayesian networks. The first type, called belief net-

works, represents only assertions of conditional inde-
pendence. The second type, called causal networks,
represents assertions of cause and effect as well as as-
sertions of independence. In this paper, we argue that
metrics for belief networks should satisfy event equiv-
alence, whereas metrics for causal networks need not.
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Our score-equivalent metric for belief networks is sim-
ilar to metrics described by York (1992), Dawid and
Lauritzen (1993) and Madigan and Raferty (1994), ex-
cept that our metric scores directed networks, whereas
their metrics score undirected networks. In this pa-
per, we concentrate on directed models rather than on
undirected models, because we believe that users find
the former easier to build and interpret.

2 Belief Networks and Notation

Consider a domain U of n discrete variables x1, . . . , xn.
We use lower-case letters to refer to variables and
upper-case letters to refer to sets of variables. We
write xi = k when we observe that variable xi is in
state k. We use p(x = i|y = j, ξ) to denote the proba-
bility of a person with background knowledge ξ for the
observation x = i, given the observation y = j. When
we observe the state for every variable in set X , we
call this set of observations an instance of X . We use
p(X |Y, ξ) to denote the set of probabilities for all pos-
sible observations of X , given all possible observations
of Y . The joint space of U is the set of all instances
of U . The joint probability distribution over U is the
probability distribution over the joint space of U .

A belief network—the first of the two types of Bayesian
networks that we consider—represents a joint prob-
ability distribution over U by encoding assertions of
conditional independence as well as a collection of
probability distributions. From the chain rule of prob-
ability, we know

p(x1, . . . , xn|ξ) =

n
∏

i=1

p(xi|x1, . . . , xi−1, ξ) (1)

For each variable xi, let Πi ⊆ {x1, . . . , xi−1} be a set
of variables that renders xi and {x1, . . . , xi−1} condi-
tionally independent. That is,

p(xi|x1, . . . , xi−1, ξ) = p(xi|Πi, ξ) (2)

A belief network is a pair (BS , BP ), where BS is a
belief-network structure that encodes the assertions of
conditional independence in Equation 2, and BP is a
set of probability distributions corresponding to that
structure. In particular, BS is a directed acyclic graph
such that (1) each variable in U corresponds to a node
in BS , and (2) the parents of the node corresponding
to xi are the nodes corresponding to the variables in
Πi. (In the remainder of this paper, we use xi to refer
to both the variable and its corresponding node in a
graph.) Associated with node xi in BS are the prob-
ability distributions p(xi|Πi, ξ). BP is the union of
these distributions. Combining Equations 1 and 2, we
see that any belief network for U uniquely determines

a joint probability distribution for U . That is,

p(x1, . . . , xn|ξ) =
n

∏

i=1

p(xi|Πi, ξ) (3)

A minimal belief network is a belief network where
Equation 2 is violated if any arc is removed. Thus,
a minimal belief network represents both assertions of
independence and assertions of dependence.

3 Metrics for Belief Networks:

Previous Work

In this section, we summarize previous work,
presented—for example—in CH, Buntine, and SDLC
on the computation of a score for a belief-network
structure BS , given a set of cases D = {C1, . . . , Cm}.
Each case Ci is the observation of one or more vari-
ables in U . We sometimes refer to D as a database.

A Bayesian measure of the goodness of a belief-network
structure is its posterior probability given a database:

p(BS |D, ξ) = c p(BS |ξ) p(D|BS , ξ)

where c = 1/p(D|ξ) = 1/
∑

BS
p(BS |ξ) p(D|BS , ξ) is a

normalization constant. For even small domains, how-
ever, there are too many network structures to sum
over in order to determine the constant. Therefore re-
searchers have used p(BS |ξ) p(D|BS , ξ) = p(D, BS |ξ)
as a network-structure score. We note that this metric
treats all variables as being equally important, but can
be generalized [Spiegelhalter et al., 1993].

To compute p(D, BS |ξ) in closed form, researchers typ-
ically have made five assumptions, which we explicate
here.

Assumption 1 The database D is a multinomial

sample from some belief network (BS , BP ).

There are several assumptions implicit in Assump-
tion 1. One is that all variables in U are discrete. We
modify this assumption in another paper in this pro-
ceedings [Geiger and Heckerman, 1994]. Another as-
sumption is that the user may be uncertain as to which
belief-network structure is generating the data. This
uncertainty is encoded in the prior probabilities for

network structure p(BS |ξ). Also implicit is that, given
the data comes from a particular network structure,
the user may be uncertain about the probabilities for
that structure. These probabilities actually should be
thought of as being long-run fractions that we would
see in a very large database, and are called parameters

in the statistical literature. Finally, we note that As-
sumption 1 implies that the processes generating the
data do not change in time.



www.manaraa.com

case  1

case  2

M

x y

x y

θy x| θy x|θx

Figure 1: Illustration of Assumptions 1 and 2 for the
network structure x→ y, where x and y are binary.

Assumption 1 can be represented in a belief network.
Figure 1 illustrates the assumption for the network
structure x → y where x and y are binary variables.
(We shall use this two-variable domain to illustrate
many of the points in this paper.) The parameter θx

represents the long-run fraction of cases where x is
observed to be true. Given θx, the observations of x
in each case are independent. The parameters θy|x

and θy|x̄ represent the long-run fraction of cases where
y is observed to be true, in those cases where x is
observed to be true and false, respectively. If these
two parameters are known, then the observations of y
in any two cases are independent, provided x is also
observed for at least one of those cases.

In general, given a belief-network structure BS for
U = {x1, . . . , xn}, we use ri to denote the number
of states of variable xi, and qi =

∏

xl∈Πi
rl to denote

the number of instances of Πi. We use the integer j
to index these instances. That is, we write Πi = j to
denote the observation of the jth instance of the par-
ents of xi. We use θijk to denote the long-run fraction
of cases where xi = k, in those cases where Πi = j.
We use Θij to denote the union of θijk over k, and
ΘBS

to denote the union of Θij for all instances j of
all variables xi. Thus, the set ΘBS

corresponds to the
parameter set BP for belief-network structure BS , as
defined in Section 2. Here, however, these parame-
ters are long-run fractions whose values are uncertain.
Also, we use ρ(·|ξ) to denote the probability density
for a continuous variable or set of variables. For ex-
ample, ρ(Θij |BS , ξ) denotes the probability density for
the set of parameters Θij , given BS and ξ.

The next assumption, which we call parameter inde-

pendence, says that the parameters associated with a
given belief-network structure are independent, except
for the obvious dependence among the parameters for
a given variable (which must sum to one).

Assumption 2 (Parameter Independence) For

all belief-network structures BS,

ρ(ΘBS
|BS , ξ) =

∏

i

∏

j

ρ(Θij |BS , ξ)

This assumption is illustrated in Figure 1 for the net-
work structure x→ y.

If all variables in a case are observed, we say that the
case is complete. If all cases in a database are com-
plete, we say that the database is complete.

Assumption 3 All databases are complete.

We note that Spiegelhalter et al. (1993) provide an ex-
cellent survey of approximations that circumvent this
assumption.

A general metric now follows. Applying the chain rule,
we obtain

p(D|BS , ξ) =

m
∏

l=1

p(Cl|C1, . . . , Cl−1, BS , ξ) (4)

where Ci is the ith case in the database. Given As-
sumption 3, it follows that parameters remain indepen-
dent when cases are observed. This conclusion is eas-
ily seen in the simple example of Figure 1.1 Therefore,
conditioning on the parameters of the belief-network
structure BS , we have

p(Cl|C1, . . . , Cl−1, BS , ξ) = (5)
∫

ΘBS

p(Cl|ΘBS
, BS, ξ)

∏

i

∏

j

ρ(Θij |C1, . . . , Cl−1, BS, ξ)

Also, because each case in D is complete, we have

p(Cl|ΘBS
, BS, ξ) =

∏

i

∏

j

∏

k

θ
αlijk

ijk (6)

where αlijk is 1 if and only if xi = k and Πi = j in
case Cl, and 0 otherwise. Plugging Equation 6 into
Equation 5 and the result into Equation 4 yields

p(D, BS |ξ) = p(BS |ξ) (7)

·
∏

i

∏

j

∏

k

∏

l

< θijk|C1, . . . , Cl−1, BS , ξ >αlijk

where < θijk|ξ > denotes the expectation of θijk with
respect to ρ(Θij |ξ).

One difficulty in applying Equation 7 is that, a user
must provide prior distributions for every parameter
set Θij associated with every structure BS . To reduce
the number of prior distributions, we make the follow-
ing assumption.

1In general, if a variable is observed in a belief network,
we may delete all arcs emanating from it and retain a valid
belief network.
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Assumption 4 (Parameter Modularity)
If xi has the same parents in any two belief-network

structures BS1 and BS2, then for j = 1, . . . , qi,

ρ(Θij |BS1, ξ) = ρ(Θij |BS2, ξ)

We call this property parameter modularity, because it
says that the densities for parameters Θij depend only
on the structure of the belief network that is local to
variable xi—namely, Θij only depends on the parents
of xi. For example, in our two-variable domain, let
BS1 be the network with an arc pointing from x to y,
and BS2 be the network with no arc between x and
y. Then ρ(θx|BS1, ξ) = ρ(θx|BS2, ξ) because x has the
same parents (namely, none) in both belief networks.

We note that CH, Buntine, and SDLC implicitly make
the assumption of parameter modularity (Cooper and
Herskovits, 1992, Equation A6, p. 340; Buntine, 1991,
p. 55; Spiegelhalter et al., 1993, pp. 243-244). Also, in
the context of causal networks, the assumption has a
compelling justification (see Section 7). To our knowl-
edge, however, we are the first researchers to make this
assumption explicit. As we see in the following section,
this assumption has important ramifications.

Given Assumption 3, parameter modularity holds even
after cases have been observed. Consequently, we can
drop the conditioning event BS in Equation 7, to yield

p(D, BS |ξ) = p(BS |ξ) (8)

·
∏

i

∏

j

∏

k

∏

l

< θijk|C1, . . . , Cl−1, ξ >αlijk

In Heckerman et al. (1994), we provide greater de-
tail about this general metric. Here, we concentrate
on a special case where each parameter set Θij has a
Dirichlet distribution.

An important concept to be used in much of the re-
maining presentation is that of a complete belief net-
work. A complete belief-network is one with no miss-
ing edges—that is, one that represents no assertions of
conditional independence.

Assumption 5 For every complete belief-network

structure BSC
, and for all Θij ⊆ ΘBSC

, ρ(Θij |BSC
, ξ)

has a Dirichlet distribution. Namely, there exists ex-

ponents N ′
ijk > 0, such that

ρ(Θij |BSC
, ξ) ∝

∏

k

θ
N ′

ijk−1

ijk

From this assumption and our assumption of parame-
ter modularity, it follows that for every belief-network
structure BS , and for all Θij ⊆ ΘBS

, ρ(Θij |BS , ξ) has

a Dirichlet distribution.2 When every such parame-
ter set of BS has this distribution, we simply say that
ρ(ΘBS

|BS , ξ) is Dirichlet.

Combining our previous assumptions with this conse-
quence of Assumption 5, we obtain

ρ(Θij |D, BS , ξ) ∝
∏

k

θ
N ′

ijk+Nijk−1

ijk

where Nijk is the number of cases in D where xi = k
and Πi = j. Thus, if the prior distribution for Θij

has a Dirichlet distribution, then so does the poste-
rior distribution for Θij . We say that the Dirichlet
distribution is closed under multinomial sampling, or
that the Dirichlet distribution is a conjugate family

of distributions for multinomial sampling. Given this
family,

< θijk|D, ξ >=
N ′

ijk + Nijk

N ′
ij + Nij

(9)

where Nij =
∑ri

k=1 Nijk, and N ′
ij =

∑ri

k=1 N ′
ijk. Sub-

stituting Equation 9 into each term of Equation 8, and
performing the sum over l, we obtain

p(D, Be
S |ξ) = p(Be

S |ξ) ·

n
∏

i=1

qi
∏

j=1

Γ(N ′
ij)

Γ(N ′
ij + Nij)

·

ri
∏

k=1

Γ(N ′
ijk + Nijk)

Γ(N ′
ijk)

(10)

where Γ is the Gamma function, which satisfies Γ(x +
1) = xΓ(x). We shall refer to Equation 10 as the
BD metric (Bayesian metric with Dirichlet priors), al-
though we emphasize that this metric is not new.

Even with the inclusion of the assumption of param-
eter modularity, the application of this metric is diffi-
cult, because it requires that a user specify the Dirich-
let exponents N ′

ijk for every complete belief network
structure. In the following section, we introduce a
property of belief-network metrics called event equiv-

alence. In the subsequent section, we show how this
property leads to a dramatic simplification of the as-
sessment of these Dirichlet exponents.

4 Event Equivalence and Score

Equivalence

In the previous section, we used BS as an argument of
probabilities and probability densities. However, BS

is a belief-network structure, not an event. Thus, we
should have used Be

S in these situations, where Be
S is

the event that corresponds to structure BS (the super-
script “e” stands for event). In this section, we provide

2CH, Buntine, and SDLC express Assumption 5 in this
form.
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a definition of Be
S and explicate an important property

of this definition.

A simple definition of Be
S is implicit in Assump-

tion 1. In particular, this assumption says that (1)
the database is a multinomial sample from the joint
space of U , and (2) Be

S holds true iff the multino-
mial parameters for U satisfy the independence as-
sertions of BS . For example, in our two-variable do-
main, Condition 1 corresponds to the assertion that
a given database is a multinomial sample from the
joint space {xy, xȳ, x̄y, x̄ȳ}. Given BS is the network
structure with no arc between x and y, Condition 2
says that the event Be

S corresponds to the assertion
θxy + θx̄y = θxy/(θxy + θxȳ)—that is, θy = θy|x.

This definition has the following desirable property.
When two belief-network structures represent the
same assertions of conditional independence, we say
that they are isomorphic. For example, in the three
variable domain {x, y, z}, the network structures x→
y → z and x← y → z represent the same assertion: x
and z are independent given y. Given the definition of
Be

S , it follows that events Be
S1 and Be

S2 are equivalent
if and only if the structures BS1 and BS2 are isomor-
phic. That is, the relation of isomorphism induces an
equivalence class on the set of events Be

S . We call this
property event equivalence.

There is a problem with the definition, however. In
particular, events corresponding to non-isomorphic
network structures are not mutually exclusive. For
example, the event corresponding to a complete belief-
network structure always holds true, and therefore im-
plies the event corresponding to any other structure.
In this case, and in general, the scores p(D, Be

S) as-
sociated with these network structures are useless for
comparison.

A seemingly reasonable repair would be to say that
Be

S holds true iff the multinomial parameters for U
satisfy the independence and dependence assertions of
BS , where BS is now interpreted as a minimal belief-
network structure. Under this revised definition, each
event is a set of equalities (as before), and also a set
of inequalities. For example, given BS1 is the belief-
network structure x → y in our two-variable domain,
then Be

S1 is the event θy|x 6= θy; and given BS2 is
the belief-network structure with no arc, then Be

S2 is
the event θy|x = θy. These two events are mutually
exclusive. Furthermore, the events corresponding to
x→ y and y → x are equal.

This repair is still not sufficient for larger domains,
however. First, the property of score equivalence may
be violated. For example, in the three-variable do-
main {x, y, z}, the events corresponding to complete
belief-network structures for different orderings are not

equal. We may recover this property by including in
the event corresponding to a set of isomorphic network
structures E the union of inequalities associated with
each such structure in E. Second, events correspond-
ing to some non-isomorphic structures are not mutu-
ally exclusive. For example, the events corresponding
to the structures x → y ← z and x → y → z both
include the situation where θz|x = θz. In general, how-
ever, such overlaps will be of measure zero with respect
to the events that create the overlap. Thus, given a set
of overlapping events, we may exclude the intersection
from all but one of the events without affecting our
mathematical results or the intuitive understanding of
events by the user.

This revised definition of the event Be
S guarantees that

the set of events corresponding to the set of all pos-
sible network structures for a given domain is mutu-
ally exclusive. Furthermore, the definition retains the
property of event equivalence.

Proposition 1 (Event Equivalence)
Belief-network structures BS1 and BS2 are isomorphic

if and only if Be
S1 = Be

S2.

Because the score for network structure BS is
p(D, Be

S |ξ), an immediate consequence of the property
of event equivalence is score equivalence3:

Proposition 2 (Score Equivalence) The scores of

two isomorphic belief-network structures must be equal.

We note that, given the property of event equiva-
lence, we technically should score each belief-network-
structure equivalence class, rather than each belief-
network structure. Nonetheless, users find it intuitive
to work with (i.e., construct and interpret) belief net-
works. Consequently, we continue our presentation
in terms of belief networks, keeping Proposition 2 in
mind.

It is easy to show that the BD metric given by Equa-
tion 10 does not exhibit the property of score equiva-
lence for most choices of the Dirichlet exponents N ′

ijk.
Thus, the property of event equivalence must induce
constraints on the parameters N ′

ijk.

3In making the assumptions of parameter independence
and parameter modularity, we have—in effect—specified
the prior densities for the multinomial parameters in terms
of the structure of a belief network. Consequently, there is
the possibility that this specification violates the property
of score equivalence. In Heckerman et al. (1994), however,
we show that our assumptions and score equivalence are
consistent.
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5 The Prior Belief Network

In this section, we show how the property of event
equivalence and Assumptions 1 through 5 lead to con-
straints on the exponents N ′

ijk. We see that the con-
straints are so strong, that all exponents may be con-
structed from (1) a belief network reflecting the user’s
current knowledge about the next case, and (2) and
equivalent sample size for the domain as a whole.

To begin, let us see how the property of event equiva-
lence and Assumptions 1 through 4 constrain the prior
densities ρ(ΘBS

|Be
S , ξ). That is, for the moment, let

us ignore the assumption that densities are Dirichlet.

First, consider only complete belief-network struc-
tures. From the property of event equivalence, we
know that the event associated with any complete
belief-network structure for a given domain U is the
same; and we use Be

SC
to denote this event. So, sup-

pose that we know the density of the multinomial pa-
rameters for the joint space of U conditioned on Be

SC
.

Then, we may determine the density of the parameters
for any complete network structure, simply by per-
forming a change-of-variable operation. For example,
consider the complete belief-network structure x → y
for our two-variable domain. A parameter set for the
joint space is {θxy, θx̄y, θxȳ}; and a parameter set for
the network structure is {θx, θy|x, θy|x̄}. These sets are
related by the following relations:

θxy = θxθy|x θx̄y = (1− θx)(θy|x̄) θxȳ = θx(1− θy|x)

Thus, given the density ρ(θxy, θx̄y, θxȳ|B
e
SC

, ξ) for
the joint space, we may compute the density
ρ(θx, θy|x, θy|x̄|B

e
SC

, ξ) using the relation

ρ(θx, θy|x, θy|x̄|B
e
SC

, ξ) = J · ρ(θxy, θx̄y, θxȳ|B
e
SC

, ξ)

where J is the Jacobian of the transformation

J =

∣

∣

∣

∣

∣

∣

∂θxy/∂θx ∂θx̄y/∂θx ∂θxȳ/∂θx

∂θxy/∂θy|x ∂θx̄y/∂θy|x ∂θxȳ/∂θy|x

∂θxy/∂θy|x̄ ∂θx̄y/∂θy|x̄ ∂θxȳ/∂θy|x̄

∣

∣

∣

∣

∣

∣

= θx(1 − θx) (11)

Given the assumption of parameter modularity,
this result extends to any belief-network structure.
Namely, in Heckerman et al. (1994, Theorem 2),
we show that, given the density of the multinomial
parameters for the joint space of U conditioned on
Be

SC
, we may determine the density of the parame-

ters for any network structure. To understand this
result, consider the incomplete network structure con-
taining no arc between x and y for our two vari-
able domain. The method for determining the den-
sity for the parameters of BS is illustrated in Fig-
ure 2. Given the assumption of parameter indepen-

ρ θ θ θ ξ ρ θ θ θ ξ( , , | , ) ( , , | , )xy x y x y x y
h

xy x y x y x y
hB B→ ←=

x yBxy:

x yBx y→ : x yBx y← :

change of
variable

parameter
modularity

Figure 2: A method for obtaining the density for the
parameters of BS from the density of the joint space
of the domain.

dence, we may obtain the densities for θx and θy sep-
arately. To obtain the density for θx, we identify a
complete network structure BSC1 such that x has the
same parents (namely, none) in both BS and BSC1.
Next, using the change-of-variable procedure described
in the previous paragraph, we determine the density
ρ(θx|B

e
SC1, ξ) from ρ(θxy, θx̄y, θxȳ|B

e
SC

, ξ). Then, we
use the assumption of parameter modularity to ob-
tain ρ(θx|B

e
S , ξ) = ρ(θx|B

e
SC1, ξ). In a similar man-

ner, as illustrated in the figure, we obtain the density
ρ(θy|B

e
S , ξ).

Next, let us consider Assumption 5. By a similar ar-
gument to that given in the first part of this discus-
sion, we know that given any two complete network
structures BSC1 and BSC2, we may obtain the den-
sity ρ(ΘBSC1

|Be
SC

, ξ) from ρ(ΘBSC2
|Be

SC
, ξ), and vice

versa, through a change of variable. If we assume that
the densities for BSC1 are Dirichlet, however, it may
not be the case that the densities for BSC2 will be
Dirichlet. For example, in our two-variable domain,
suppose ρ(θx, θy|x, θy|x̄|B

e
SC

, ξ) is equal to a constant
(all Dirichlet exponents equal to 1). After a change of
variable, from Equation 11 we have

ρ(θy, θx|y, θx|ȳ|B
e
SC

, ξ) ∝ ·
θy(1−θy)
θx(1−θx)

=
θy(1−θy)

(θyθx|y+(1−θy)θx|ȳ)(1−(θyθx|y+(1−θy)θx|ȳ))

which is not Dirichlet. Consequently, the Dirichlet ex-
ponents must be constrained.

In Heckerman et al. (1994, Theorem 7), we show
that if ρ(ΘBSC

|Be
SC

, ξ) is Dirichlet for every complete
belief-network structure BSC

, then the density of the
parameters for the joint space (also conditioned on
Be

SC
) must also have a Dirichlet distribution. Com-

bining this result with our previous discussion, we see
that we may obtain all exponents N ′

ijk for all belief-
network structures, simply by assessing the Dirichlet
density for the joint space of U conditioned on Be

SC
.
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For domains containing a small number of variables,
the user may assess this density directly. In larger
domains, however, we can use an assessment method
based on the notion of an equivalent sample size,
described by Winkler (1967). To understand this
method, let Θx1,...,xn

denote the set of parameters
for the joint space of U = {x1, . . . , xn}. Denote the
Dirichlet density for these parameters as follows:

ρ(Θx1,...,xn
|Be

SC
, ξ) ∝

∏

x1,...,xn

[θx1,...,xn
](N

′
x1,...,xn

−1)

(12)
Now, the expectation of Θx1,...,xn

with respect to
ρ(Θx1,...,xn

|Be
SC

, ξ) is equal to the user’s prior proba-
bility p(x1, . . . , xn|B

e
SC

, ξ) for the next instance of the
domain to be observed. Thus, using the formula for
the expectation of Θx1,...,xn

given the Dirichlet density
in Equation 12, we obtain

p(x1, . . . , xn|B
e
SC

, ξ) =
N ′

x1,...,xn

N ′
(13)

where
N ′ =

∑

x1,...,xn

N ′
x1,...,xn

(14)

Thus, we can determine all needed exponents by hav-
ing a user assess p(x1, . . . , xn|B

e
SC

, ξ) and N ′.

The user can assess the joint probability distribution
p(x1, . . . , xn|B

e
SC

, ξ) by constructing a belief network
for U , given Be

SC
. We call this network the user’s prior

belief network.4

The constant N ′ has a simple interpretation as the
equivalent number of cases that the user has seen since
he was completely ignorant about the domain. Win-
kler (1967) shows how a user may be trained to assess
N ′.

6 The BDe Metric

Given a prior belief network and the constant N ′, it
is not difficult to show that the exponents N ′

ijk are
determined by the relation

N ′
ijk + 1 = N ′ · p(xi = k, Πi = j|Be

SC
, ξ) (15)

(see Heckerman et al. 1994 for a derivation). This con-
straint has a simple interpretation in terms of equiv-
alent sample sizes. Namely, N ′

ij =
∑ri

k=1 N ′
ijk is the

equivalent sample size for the parameter set Θij—the

4At first glance, there seems to be a contradiction in
asking the user to construct such a belief network—which
may contain assertions of independence—under the asser-
tion that Be

SC
is true. The assertions of independence in

the prior network, however, refer to independencies in the
next case to be observed. In contrast, the assertion of full
dependence Be

SC
refers to long-run fractions.

parameters for xi, given that we have observed the jth
instance of Πi. From Equation 15, we see that

N ′
ij = N ′ · p(Πi = j|Be

S , ξ)

That is, the equivalent sample size for Θij is just the
overall equivalent sample size N ′ times the probability
that we see Πi = j.

Substituting Equation 15 into the BD metric (Equa-
tion 10), we obtain the BDe metric, a score equivalent
metric for belief networks. We note that N ′ acts as a
gain control for learning—the smaller the value of N ′,
the more quickly the BDe metric will favor network
structures that differ from the prior belief-network
structure.

As an example, let Bx→y and By→x denote the belief-
network structures where x points to y and y points
to x, respectively, in our two-variable domain. Sup-
pose that N ′ = 12 and that the user’s prior net-
work gives the joint distribution p(x, y|Be

x→y, ξ) =
1/4, p(x, ȳ|Be

x→y, ξ) = 1/4, p(x̄, y|Be
x→y, ξ) = 1/6, and

p(x̄, ȳ|Be
x→y, ξ) = 1/3. Using the BDe metric, if we

observe database D containing a single case with both
x and y true, we obatin

p(D, Be
x→y|ξ) = p(Be

x→y|ξ) ·
11!

12!

6!

5!

5!

6!

3!

2!

p(D, Be
y→x|ξ) = p(Be

y→x|ξ) ·
11!

12!

5!

4!

4!

5!

3!

2!

Thus, as required, the BDe metric exhibits the prop-
erty of score equivalence.5

7 Causal Networks

People often have knowledge about the causal relation-
ships among variables in addition to knowledge about
conditional independence. Such causal knowledge is
stronger than is conditional-independence knowledge,
because it allows us to derive beliefs about a domain
after we intervene. For example, most of us believe
that smoking causes lung cancer. From this belief, we
infer that if we stop smoking, then we decrease our
chances of getting lung cancer. In contrast, if we were
to believe that there is only a statistical correlation be-
tween smoking and lung cancer, perhaps because there
is a gene that causes both our desire to smoke and lung

5We note that Buntine presented without derivation
the special case of the BDe metric obtained by letting
p(U |Be

SC
, ξ) be uniform, and noted the property of score

equivalence. Also, CH presented a special case of the
BD metric wherein each N ′

ijk is set to 1, yielding a uni-
form Dirichlet distribution on each density ρ(Θij |B

e
S , ξ).

This special case does not exhibit the property of score
equivalence.
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cancer, then we would infer that giving up cigarettes
would not decrease our chances of getting lung cancer.

Causal networks, described—for example—by Spirtes
et al. (1993), Pearl and Verma (1991), and Heckerman
and Shachter (1994) represent such causal relation-
ships among variables. In particular, a causal network
for U is a belief network for U , wherein it is asserted
that each nonroot node x is caused by its parents. The
precise meaning of cause and effect is not important for
our discussion. The interested reader should consult
the previous references.

More formally, we define a causal network to be a pair
(CS , CP ), where CS is a causal-network structure and
CP is a set of probability distributions corresponding
to that structure. The event Ce

S is the same as that for
a belief-network structure, except that we also include
in the event the assertion that each nonroot node is
caused by its parents.

In contrast to the case of belief networks, it is not ap-
propriate to require the properties of event equivalence
or score equivalence. For example, in our two-variable
domain, both the causal network CS1 where x points to
y and the causal network CS2 where y points to x rep-
resent the assertion that x and y are dependent. The
network CS1, however, in addition represents the as-
sertion that x causes y, whereas the network CS2 rep-
resents the assertion that y causes x. Thus, the events
Ce

S1 are Ce
S2 are not equal. Indeed, it is reasonable to

assume that these events—and the events associated
with any two different causal-network structures—are
mutually exclusive.

Therefore, the consequences of event equivalence dis-
cussed in Section 5 do not apply to causal networks.
In particular, the exponents N ′

ijk have no theoretical
constraints, and we may use the BD metric to score
causal networks. Nonetheless, for practical reasons,
it is useful to constrain the parameters N ′

ijk. SDLC
describe one such approach. First, as we do, they
asses a prior network. Then, for each variable xi and
each instance j of Πi in the prior network, they al-
low the user to specify an equivalent sample size N ′

ij .
From these assessments, SDLC compute equivalent
sample sizes N ′

ij for other network structures using
an expansion–contraction procedure. This method has
several appealing theoretical properties, but is compu-
tationally expensive. CH’s specialization of the BD
metric, wherein they set each N ′

ijk to one is efficient,
but ignores the prior network. We have explored a
simple approach, wherein each Nij is equal to N ′′, a
constant. We call this metric the BDu metric (“u”
stands for uniform equivalent sample sizes). Of course,
the BDe metric may also be used to score causal net-
works.

Note that, in the context of causal networks, the as-
sumption of parameter modularity (Assumption 4) has
an appealing justification. Namely, we can imagine
that a causal mechanism is responsible for the inter-
action between each node and its parents. The as-
sumption of parameter modularity then follows from
the assumption that the causal mechanisms are inde-
pendent.

8 Limitations of the BDe Metric

Let us again consider the scoring of belief networks.
Although our method for determining the exponents
N ′

ijk is simple, it is—in a sense—too simple. Namely,
it may be the case that a user has more knowledge
about some variables than others, and would like to
assess different equivalent sample sizes N ′

ij for differ-
ent values of i and j. If the network is causal, doing so
represents no problem. As we have seen in Section 5,
however, doing so in the case of belief networks re-
quires that we abandon at least one of (1) score equiv-
alence, (2) Dirichlet priors, or (3) the ability to score
all possible network structures.

We believe it is important to retain score equivalence
if at all possible. Furthermore, it is computationally
expensive to abandon the Dirichlet assumption. There
is promise, however, in avoiding the third assumption.
Namely, given a non-score-isomorphic metric that ac-
commodates variable dependent sample sizes, we could
use it to score only one element from each equivalence
class of isomorphic network structures. To do so, we
need a method for designating exactly one network
structure from each equivalence class as the network
to be scored. A simple approach would be to ask the
user to specify a complete ordering over the domain
variables. For example, given the ordering (x, y, z) for
our three-variable domain, the equivalence class corre-
sponding to the conditional independence of x and z
given y would be represented by the network structure
x → y → z; and we would score only this structure.
As a more subtle example, given the same ordering,
the equivalence class corresponding to the conditional
independence of x and y given z would be represented
by x → z → y, because among those network struc-
tures in this equivalence class, x occurs first only in
this network structure.

9 Priors for Network Structures

To complete the information needed to compute our
metrics, the user must assess the prior probabilities
for the network structures. These assessments are log-
ically independent of the assessment of the prior net-
work, except in the limit as equivalent sample size(s)
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approach infinity, when the prior network structure
must receive a prior probability of one. Nonetheless,
structures that closely resemble the prior network tend
to have higher prior probabilities.

Here, we propose the following parametric formula for
p(Be

S |ξ) that makes use of the prior network. Given
a network structure BS , let δi denote the number of
nodes in the symmetric difference of the parents of
xi in BS and the parents of xi in the prior network
structure. Then, BS and the prior network differ by
δ =

∑n

i=1 δi arcs; and we penalize BS by a constant
factor 0 < κ ≤ 1 for each such arc. That is, we set

p(Be
S |ξ) = c κδ (16)

where c is a normalization constant. This formula is
simple, as it requires only the assessment of a single
constant κ. Nonetheless, we can imagine generalizing
the formula by punishing different arc differences with
different weights, as suggested by Buntine. Although
this parametric form does not satisfy score equivalence,
we may recover this property, as described in the pre-
vious section, by designating within each event equiv-
alence class the network structure to be scored.

10 Evaluation

In this section, we evaluate the BDe metric using the
36-node Alarm network for the domain of ICU venti-
lator management [Beinlich et al., 1989]. In our eval-
uations we start with the given network, which we
call the gold-standard network. Next, we generate a
database from the given network, using a Monte-Carlo
technique. Then, we use one of the scoring metrics and
a local search procedure similar to the one described in
Lam and Bacchus (1993) to identify a high-scoring net-
work structure. Next, we use the database and prior
knowledge to populate the probabilities in the new net-
work, called the learned network. In particular, we set
each probability p(xi = k|Πi = j) to be the posterior
mean of θijk, given the database. Finally, we com-
pare the joint distributions of the gold-standard and
learned networks.

In this paper, we use the cross-entropy measure
for comparison. In particular, let q(xi, . . . , xn) and
p(xi, . . . , xn) denote the probability of an instance of
U obtained from the gold-standard and learned net-
works, respectively. Then we measure the accuracy of
a learning algorithm using the cross entropy H(q, p),
given by

H(q, p) =
∑

x1,...,xn

q(xi, . . . , xn) log
q(xi, . . . , xn)

p(xi, . . . , xn)

(17)

The lower the value of the cross entropy, the more ac-
curate the algorithm. In Heckerman et al. (1994), we
describe a method for computing the cross entropy of
two networks that makes use of the network structures.

In our experiments, we construct prior networks by
adding noise to the gold-standard network. We con-
trol the amount of noise with a parameter η. When
η = 0, the prior network is identical to the gold-
standard network, and as η increases, the prior net-
work diverges from the gold-standard network. When
η is large enough, the prior network and gold-standard
networks are unrelated. To generate the prior network,
we first add 2η arcs to the gold-standard network, cre-
ating network structure BS1. When we add an arc,
we copy the probabilities in BP1 so as to maintain
the same joint probability distribution for U . Next,
we perturb each conditional probability in BP1 with
noise. In particular, we convert each probability to
log odds, add to it a sample from a normal distribu-
tion with mean zero and standard deviation η, convert
the result back to a probability, and renormalize the
probabilities. Then, we create another network struc-
ture BS2 by deleting η arcs and reversing up to 2η
arcs (a reversal may create a directed cycle, in which
case, the reversal is not done). Next, we perform in-
ference using the joint distribution determined by net-
work (BS1, BP1) to populate the conditional probabil-
ities for network (BS2, BP2), which we return as the
prior network.

Figure 3 shows the cross entropy of learned networks
with respect to the Alarm network (inverse learning
accuracy) as a function of the deviation of the prior-
network from the gold- standard network (η) and the
user’s equivalent sample size (N ′) for the BDe metric.
In this experiment, we used 100-case databases gener-
ated from the Alarm network. For each value of η and
N ′, the cross-entropy values shown in the figure repre-
sent an average over ten learning instances, where in
each instance we used a different database and prior
network. The databases and prior networks generated
for a given value of η were used for all values of N ′. We
made the prior parameter κ a function of N ′—namely,
κ = 1/(N ′ + 1)—so that it would take on reasonable
values at the extremes of N ′. (When N ′ = 0, reflect-
ing complete ignorance, all network structures receive
the same prior probability. Whereas, in the limit as
N ′ approaches infinity, reflecting complete confidence,
the prior network structure receives a prior probability
of one.)

The qualitative behavior of the curve is reasonable.
Namely, when η = 0—that is, when the prior net-
work was identical to the Alarm network—learning
accuracy increased as the equivalent sample size N ′

increased. Also, learning accuracy decreased as the
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Figure 3: Evaluation results.

prior network deviated further from the gold-standard
network, demonstrating the expected result that prior
knowledge is useful. In addition, when η 6= 0, there
was a value of N ′ associated with optimal accuracy.
This result is not surprising. If N ′ is too large, then
the deviation between the true values of the param-
eters and their priors degrade performance. On the
other hand, if N ′ is too small, the metric is ignoring
useful prior knowledge. We speculate that results of
this kind can be used to calibrate users in the assess-
ment of N ′.

Also, the quantitative results are encouraging. To pro-
vide a scale for cross entropy in the Alarm domain,
note that the cross entropy of the Alarm network with
an empty network for the domain (i.e., a network
where all variables are independent) whose marginal
probabilities are determined from the Alarm network
is 13.6. Using only a 100 case database, and a prior
network with a significant amount of noise—η = 2,
the cross entropy for the BDe metric, at the optimum
value of N ′ (= 16), is only 1.6.
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